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Abstract: We demonstrate a lensless diffuser-based camera array for large field-of-view
imaging. Images are captured from multiple disjoint sensors and the synthetic large format
sensing area is recovered by solving a compressive sensing inverse problem. © 2020 The
Author(s)

1. Introduction

Large-format camera sensors enable wider fields-of-view (FoV) and larger baselines for 3D imaging, which could
be useful for applications such as robotic vision and scientific imaging. Despite these advantages, large imaging
sensors are expensive and difficult to manufacture [1]. Furthermore, the size, weight, and complexity of lens
assemblies scale with sensor size, resulting in large, bulky systems. Tiling multiple small sensors together is a
cost-effective and scalable approach to emulating a larger sensor. However, tiled sensor arrays exhibit gaps in
the effective sensing area, rendering them incompatible with a standard lens as points in the scene that focus
to a gap between sensors in an array would be unrecoverable. Here, we propose replacing the camera lens with a
pseudorandom phase diffuser which maps each point in the scene to a high-contrast intensity pattern on the sensing
plane [2]. We leverage compressive sensing techniques conditional on these multiplexed intensity measurements
to realize a large synthetic sensing area from tiled sensors. The diffuser is placed close to the sensor array giving
rise to a lightweight and compact imager that recovers the scene by solving a sparsity-constrained inverse problem.
In this paper we present an experimental prototype system featuring a 2× 2 sensor array built from commodity
hardware. Our prototype reconstructs images using an effective sensing area that covers merely 8.6% of the total
synthesized sensing area.

2. Theory

Our prototype is based on DiffuserCam, a lensless camera that consists of a phase mask placed over a sensing
element [2]. Here, we consider a non-contiguous sensor array behind a single phase mask. The camera measure-
ments, b, can be modeled as a masked 2D convolution between the scene, v[x,y], and the point spread function
(PSF), h[x,y], where M[x,y] is the binary mask. This can be written as a matrix-vector multiplication, where H
represents the optical forward model and ∗ denotes the 2D convolution operator:

b = M[x,y] ·
(

h[x,y]∗v[x,y]
)
= MHv. (1)

The scene is recovered by solving a non-negative sparsity-constrained inverse problem using the fast iterative
shrinkage-thresholding algorithm (FISTA) [3], where Ψ is a sparsifying transform (e.g. 2D total variation) and τ

is a tuning parameter:

v̂ = argmin
v≥0

1
2
‖b−MHv‖2

2 + τ‖Ψv‖1. (2)

3. Prototype and Results

The hardware setup (Fig. 1 (a, b)) for the multi-sensor prototype consists of an off-the-shelf diffuser (Luminit 0.5°)
placed over a 2×2 array of camera sensors (Raspberry Pi AdaFruit SpyCams). Calibration of the system occurs in
two stages: PSF acquisition and sensor orientation. The first stage, PSF acquisition, obtains a PSF corresponding to
a synthetic sensing area that is larger than the effective sensing area. We laterally raster the diffuser over the array
and image the caustic patterns formed by illumination from a distant point source. The resulting set of images is
run through a panoramic stitching algorithm to create the “full” PSF. The second stage of calibration identifies
the positions and orientations of each sensor in the array relative to the diffuser. Each sensor images a distant
point source centered above the array. A semi-automated image registration algorithm then uses these images to
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determine the rigid transformation that overlays each sensor image onto the full PSF [4]. These transformations are
used to generate subsequent sensor array measurements, b, and to create the masking operator, M. The described
calibration sequence can handle arbitrary array configurations and is robust to imprecise sensor placements.

Fig. 1. (a) Multi-sensor DiffuserCam: 2× 2 sensor array produces a non-contiguous DiffuserCam
measurement from which the scene is reconstructed. (b) Calibration: relative positions of the four
sensors are found using a point-matching algorithm that defines rigid transformations mapping each
sensor (blue boxes) onto the full PSF. (c) Simulated results: image reconstructions for a synthetic
large-format sensing area 12× larger than the effective sensing area of the disjoint sensor array. (d)
Experimental results: image reconstructions of Cal logo and sparse point sources located along the
gaps in the sensor array.

Figure 1(c) shows successful recovery of simple scenes from simulated measurements. Here, the four sensors in
the array cover only 8.6% of the synthetic sensing area suggesting that Multi-sensor DiffuserCam could be ideal
for systems with limited memory capacity or data rate bottlenecks. We successfully recover content on the edges of
the FoV, providing a 10× increase in the lateral FoV from the single-sensor case. Figure 1(d) shows experimental
reconstructions, which due to the placement of the objects, could not have been recovered by a lensed sensor array.
Our reconstructions use 3000 iterations of FISTA with TV regularization. Experimentally, we are able to recover
a number of simple objects, but the quality of reconstructions suggests only a 5× increase in the FoV from the
single-sensor case due to model mismatch. The resolution of the system is dependent on scene complexity; sparse
objects have a higher recovery rate than dense scenes. More sophisticated data-driven regularization methods
could be used to improve the reconstructions and potentially recover more dense scenes [5].
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